Introduction to the Cluster

http://www.accre.vanderbilt.edu
Agenda

- Resource overview (slides 3-6)
- Logging on with `ssh` and X tunneling (slide 7-8)
- Transferring files to and from the cluster with `scp` (slide 9)
- Setting your environment and `setpkgs` (slides 10-14)
- Scheduler basics and ACCRE policies (slides 15-16)
- Requesting resources - submitting jobs (slides 17-20)
- Checking on submitted jobs (slides 21-25)
- Cluster etiquette - running jobs (slides 26-28)
- Cluster disk space and etiquette (slides 29-30)
- ACCRE storage policies (slides 31)
- Getting help (slide 32)
Cluster X86 Processors

- ~760 cores in dual or dual-dual nodes (faster floating point operations)
- ~220 nodes / 440 cores, 2.0GHz AMD (dual) Opterons
 - 180 nodes with 1 GB memory
 - 60 nodes with 2 GB memory
 - 50% with Myrinet networking
- 80 nodes / 320 cores, 1.8GHz / 2.4 Ghz AMD (dual dual) Opterons
 - 80 nodes with 4 GB memory
 - 100% Ethernet networking
Cluster PowerPC Blades

- 644 JS20 IBM PowerPCs in dual blades (faster integer operations)
- 322 blades with 2.2GHz PowerPC processors
- 1.5GB memory
- ~50% with Myrinet networking
Cluster Details

- Each brood: 20 x86 + gateway or 28 PPC blades + gateway
- Communication between broods (groups of compute nodes or blades) and gateways and outside world is 1Gbps bandwidth Ethernet
- Connection between compute nodes are Ethernet or 2Gbps low-latency Myrinet (for parallel apps that can take advantage)
- For more details see the High Performance Compute Cluster page at our web site:

http://www.accre.vanderbilt.edu/mission/services/hpc.php
Logging On

SSH (Secure Shell)

- `ssh username@vmplogin.accre.vanderbilt.edu`
- `ssh username@ppclogin.accre.vanderbilt.edu`
- Round robin to one of the sires/gateways to distribute load on gateways

Changing your password on `vmpsched`

- `ssh username@vmplogin.accre.vanderbilt.edu`
- `ssh username@vmpsched`
- `passwd`
Displaying graphics over net can be slow

Run X server

Turn on `ssh` X11 tunneling when connect, e.g., for OS X and Linux:

```
ssh -X user@vmplogin.accre.vanderbilt.edu
```

Set up directions, also for Windows, see:

www.accre.vanderbilt.edu/support/selfhelp/faq.php#xremotedisplay

Example
Transferring Files To/From Cluster

- GUI SSH client: http://www.ssh.com
- Command line Secure Copy – scp
 - Usage like Unix “cp file1 file2” (source to destination)
 - But can use to transfer files between remote machines, e.g.,

If on cluster, to copy from outside machine (i.e. your desktop)

\[\text{scp} \ \text{username}\@\text{outsidemachine}:\text{file} \ \text{/your/cluster/dir} \]

If on outside machine, to copy to cluster

\[\text{scp} \ -r \ /\text{some/dir}/* \ \text{username}\@\text{vmplogin}:\text{/your/cluster/dir} \]

- Also sftp
Your Environment

- `.bashrc/.bash_profile` (for `bash`)
 - `export env_variable=definition`
 - `export PATH=/home/username/bin:$PATH`
 - `setpkgs -[aer] package_name`

- `.cshrc` (for `csh` or `tcsh`)
 - `setenv env_variable "definition"`
 - `setenv PATH"/home/username/bin:$PATH"`
 - `setpkgs -[aer] package_name`

- E.g., add `/usr/lpp/mmfs/bin` to `$PATH`
Usage:

- `setpkgs` with no options prints help to screen (no man page)
- `setpkgs -a package_list` adds environment variables
- `setpkgs -e package_list` erases environment variables
- `setpkgs -r package_list` replaces all with packages listed
- `pkginfo` with no options prints list of installed packages
- `pkginfo -p package -i` prints detailed info on `package`

Examples
Can auto-set cluster environment depending on machine architecture by adding to your login files:

- `.bashrc` (or `.bash_profile`):
  ```bash
  if [ `arch` == "ppc64" ]; then
    # Put your ppc64 statements here
    # E.g., setpkgs commands
    setpkgs -r
  else
    # Put your x86_64 statements here
    # E.g., setpkgs commands
    setpkgs -r
  fi
  ```
setpkgs / pkginfo

• .cshrc:

if (`arch` == "ppc64"); then
 #Put your ppc64 statements here
 #E.g., setpkgs commands
 setpkgs -r some_pkg
else
 #Put your x86_64 statements here
 #E.g., setpkgs commands
 setpkgs -r some_pkg
endif
Example:

```bash
if [ `arch` == "ppc64" ]; then
    echo "in ppc"
    setpkgs -a openmpi_gcc-ibm_ether
    setpkgs -a gcc_compiler
    export ARCHPATH=$HOME/ppc64
    NODETYPE=powerpc
else
    echo "in x86_64"
    setpkgs -a openmpi_gcc_ether
    setpkgs -a gcc_compiler
    export ARCHPATH=$HOME/x86_64
    NODETYPE=intel
fi
export NODETYPE
```
Scheduler Basics

- Scheduling jobs (slide 16)
 - www.accre.vanderbilt.edu/mission/cluster_policies/job_scheduler.php

- qsub and PBS scripts (slides 17-19)
 - http://www.accre.vanderbilt.edu/support/selfhelp/gettingstarted.php
 - http://www.accre.vanderbilt.edu/support/selfhelp/faq.php
 - man qsub ; man pbs_resources

- Resources available:
 - http://www.accre.vanderbilt.edu/mission/services/hpc.php#nodes

- Using the scheduler (slides 20-27)
How The Scheduler Works

- Submit jobs to the scheduler
 - `qsub [options] PBS_script`

- TORQUE/PBS resource manager - PBS MOM (machine oriented miniserver) runs on nodes executes instructions, keeps track of resources and usage

- Maui/Moab job scheduler - gets resources from PBS and schedules jobs based on:
 - Fairshare contribution – from CPU buy-in
 - Job run priority – calculated based on ~80% fairshare usage and ~20% queuetime
#!/bin/tcsh

#PBS -M my.address@vanderbilt.edu
#PBS -m bae
#PBS -l nodes=4:ppn=2:x86
#PBS -l walltime=00:30:00
#PBS -l mem=1000mb

#PBS -o myjob.output
#PBS -j oe

echo "This is my first job submitted to the ACCRE cluster."

Script comment: replace echo with your script/executables
resource list can be complicated for parallel codes
node attributes defined by our specific hardware (slide 19)
PBS Script Example

#!/bin/sh
Resource list
#PBS -l nodes=1:ppn=1:x86
#PBS -l walltime=15:00
#PBS -l cput=15:00
#PBS -j oe
Defining environment variables for convenience
Name of your Matlab script
PROGRAM="~/test/matlab/matlab.script"
Save output to file output.txt
OUTPUT="~/output.txt"
This is the equivalent of: /usr/local/matlab/bin/matlab <
~/test/matlab/matlab.script > ~/output.txt

matlab < $PROGRAM > $OUTPUT
qsub Node Attributes

- Cluster specific \texttt{qsub}/PBS node attributes
 - `ppc64, nomyrinet`
 - `ppc64, myrinet`
 - `x86, opteron, nomyrinet`
 - `x86, opteron, nomyrinet, bigmem`
 - `x86, opteron, nomyrinet, dualdual`
 - `x86, opteron, myrinet`

- E. g., `#PBS -l nodes=1:x86:nomyrinet`
- Or `#PBS -l nodes=32:x86:myrinet:ppn=2`
- Maximize resource pool
- Leave \texttt{walltime} and \texttt{mem} buffer (slide 22)
qsub Memory Specs

- If single processor job and default memory suffices:
 - Do not specify any memory settings

- If single processor job needs > 400mb:
 - E.g., `qsub -l mem=500mb`

- If multi-processor job and default memory per processor suffices:
 - Do not specify any memory settings

- If multi-processor job needs > 400mb per processor, e.g., for 10 processors:
 - Use `pmem=` and `mem=` options
 - E.g., `qsub -l pmem=500mb, mem=5000mb`
Using The Scheduler

- `qsub [options] <pbs_script>`: submit job for execution
- `qstat`: view job(s) status
- `showq`: view queue status
- `pbsnodes -l -a`: view nodes & attributes
- `checkjob -v <jobID(s)>`: view job(s) status
- `checknode <nodename>`: view node status
- `mdiag -f`: check fairshare
- `mdiag -v -p`: check job priority
- `mdiag -v -j <jobID>`: resource summary
- `tracejob -n <#days> <jobID>`: trace job history
Self Diagnosing Problems

- Killed jobs
 - Bug in your code or script
 - Scheduler killed because exceeded resources, e.g., walltime, memory.
 - Leave a buffer in these parameters - especially with unfamiliar, new, or newly scaled-up code
 - Also, unexpected high system load can slow running
 - Use Linux `pmap` on node to estimate memory usage of running job
 - Use `p_reaper` in your PBS script to auto-kill jobs that cause memory problems, see:
 accre-forum 2007 March archive
Self Diagnosing Problems

- Blocked or Deferred jobs, e.g., *too_much_mem.pbs*
 - Use `checkjob -v` to see the reason
 - `qstat -f` gives similar information
 - Changing parameters, `qdel`, and resubmitting
 - Or `qalter/mjobctl`

- Jobs that do not return results
 - Use `tracejob` on `vmpsched`, note non-zero `Exit_status`
Self Diagnosing Problems

- Long wait times: check cluster utilization, fairshare, and job priority, and refine resource request if possible
 - mdiag -f (older command called diagnose)
 - mdiag -v -p
 - Look at utilization charts on website, especially by processor type:

 http://www.accre.vanderbilt.edu/utilization/index.php
Self Diagnosing Problems

- Slow execution may be due to load on node, load on local or shared file system, or high network loads
 - \textbf{pbsnodes}
 - Briefly log onto node and use Unix: \texttt{uptime}, \texttt{top}, or \texttt{ps}
 - Log onto \texttt{vmpsched} to see offline nodes report
 - Please report problem nodes or slow connectivity through \texttt{RT}
Scheduler Etiquette

- Our goal is to provide fair use of the resources
 - 100% fair usage
 - Set number of CPUs becoming free every hour
- Stage large quantity job submissions (10 idle jobs allowed at a time)
- To maximize your use of the available resources
 - Start modestly - test new or unfamiliar code on test cluster first
 - `ssh you@test[dd|opt|ppc]gw1.accre.vanderbilt.edu`
 - Learn scheduler commands from man pages, online docs, ACCRE site:

http://www.accre.vanderbilt.edu/support/selfhelp/faq.php#moabcommands
Scheduler Etiquette

- TORQUE/PBS and Moab scheduler and job submission documentation at Cluster Resources:

- Help for specific commands:
 - Under TORQUE Resource Manager follow these links:
 - TORQUE Wiki Documentation
 - Documentation overview
 - A. Commands overview
 - Under Moab Workload Manager follow these links:
 - Commands Documentation
Scheduler Etiquette

- To maximize your use of the available resources (cont’d)
 - Know your code, available cluster resources vs. required resources
 - Know cluster policies on runtime and resource limitations (continually updated a qsub prefilter to catch runtime incompatibilities):
 http://www.accre.vanderbilt.edu/mission/cluster_policies
 - Plan ahead for long jobs
 - If possible, compile code on x86 & PPC architectures
 - Ask experienced group members (if possible)
 - Ask us (submit RT) if must run in unusual way
Cluster Storage/Backup

- Cluster
 - GPFS file system from IBM
 - www.accre.vanderbilt.edu/mission/services/hpc.php#gpfs
 - can store your data on /home and /scratch
 - /home backed up daily using TiBS
 - www.accre.vanderbilt.edu/mission/services/storage.php
Cluster Storage/Backup

- **Disk quotas**
 - `/home` (10GB soft; 20GB hard)
 - `/scratch` (10GB soft; 100GB hard)

- **File quotas**
 - `/home` (100,000 soft; 200,000 hard)
 - `/scratch` (100,000 soft; 1,000,000 hard)

- **GPFS** `mmlsquota` shows your current total usage:

 `/usr/lpp/mmfs/bin/mmlsquota`

- For convenience add to your PATH `/usr/lpp/mmfs/bin`

- Unix `du` shows disk usage in a given directory
ACCREE Storage Policies

- Cluster disk usage and quota policies summary:
 www.accre.vanderbilt.edu/mission/cluster_policies/diskspace_backups.php

- If you need to store larger quantities of data than the default allowance, ACCREE will work with you to arrange alternatives most suited to your needs, e.g., storage depots:
 http://www.accre.vanderbilt.edu/mission/services/storage.php
Getting Help

- Get help from experienced group members
- Join accre-forum and user’s group
 - http://www.accre.vanderbilt.edu/support/lists.php
- Help from ACCRE
 - Materials on our website: User Support, FAQ, Cluster Policies
 - http://www.accre.vanderbilt.edu/support/contact/submit_RT.php
 - Office hours M-F 4-5PM